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Basis of the mutational model 
 
The steps involved in the creation of the model are outlined in Supplementary Figure 1. 
Briefly, we determined the probability of a given base mutating into one of the three other 
possible bases as well as the coding impact of each possible mutation. We added probabilities 
across a gene to create per-gene probabilities of all mutation types under study: synonymous, 
missense, nonsense, and splice site. 
 
The first, and most important, step of making a model based on sequence context is to establish 
the mutability of a given base. Krawczak and colleagues determined that the best context for 
determining the mutability of a single base is to include both the 5’ and 3’ bases1. Following the 
lead of other groups, we took this trinucleotide context as sufficient for determining mutability2. 
We used 1000 Genomes intergenic regions that are orthologous between humans and chimps as 
the basis for our mutation rate table. Across the sequence, we tallied the number of observations 
for each of the 64 possible trinucleotides and, for each SNP, considered the chimp allele to be 
ancestral and determined the trinucleotide (XY1Z) to trinucleotide (XY2Z) change that occurred. 
To determine the probability of a given trinucleotide mutating, we divided the number of 
mutations in that trinucleotide context by the number of occurrences of the trinucleotide. This 
probability is adjusted by a proportionality constant, λ, that gives the mutation rate of that 
trinucleotide for a single generation. The mutation rate for the given nucleotide is then 
proportionally divided between the three possible trinucleotides to which it could mutate. In the 
end, we have a mutation rate table that contains the probability of any of the 192 possible 
mutations. 
 
We then use the mutation rate table and the sequence context to determine the per-gene 
probability of mutation based on the sequence of the gene. For a given base in the gene, the 
trinucleotide sequence context is determined. The probability of the middle base mutating to one 
of the three other bases is queried in the mutation rate table and the type of change it would 
create is determined. The probability of mutation is added to a running total for the type of 
mutation it would cause. This is repeated for the two other possible mutations for every coding 
base in the gene as well as the bases in the conserved splice sites for all genes in the genome. In 
the end, there is a per-gene probability of each type of mutation under study: synonymous, 
missense, nonsense, and splice site. We determine the probability of a frameshift mutation by 
multiplying the probability of a nonsense mutation by 1.25, the relative rate of singleton 
frameshift to singleton nonsense mutations found in exome sequencing data from roughly 2,000 
ASD cases and controls. All probabilities of mutation are listed in Supplementary Table 1. 
 
 
Adjustments to the mutational model 
 
In order to evaluate the predictive value of the model of de novo mutation probability, we 
extracted the number of synonymous singletons – seen only once in the data set – found in each 
gene from the National Heart, Lung and Blood Institute’s Exome Sequencing Project (ESP). The 
number of these singletons in each gene was correlated to both gene length and the probability of 
synonymous mutation determined by our model. While gene length alone showed a high 
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correlation with the number of synonymous singletons (0.835), the probability of a synonymous 
mutation was significantly higher (0.854, p < 10-16). 
 
Depth adjustment 
We first investigated the role that depth of coverage could have on the predictions of mutation 
rates. The ability to call a de novo event is dependent on how well sequenced the location of the 
event is. Therefore, bases that are not covered at all should not contribute to the overall 
probability of mutation for the gene. In order to account for differences in sequencing coverage, 
we created a way to determine what fraction of a base’s mutation probabilities should be added 
to the total for the gene based on the coverage. For each base, we looked up the number of trios 
in which all members had 10x coverage or greater and used that number to determine the 
appropriate discount. For bases with almost all trios having 10x coverage, the probability of 
mutation was not adjusted. However, as the number of trios with 10x coverage dropped, the 
probability of mutation was multiplied by an adjustment factor in between 0.9 and 1. To 
determine the endpoints of the adjustment, we compared the ratio of the observed number of 
synonymous singletons to the overall probability of a synonymous mutation for a high 
confidence set of bases to sets of bases with fewer trios passing at 10x. The depth adjusted 
probabilities of synonymous mutation showed a significantly greater correlation to the number of 
synonymous singletons in the ESP data set when compared to gene length alone (0.891, p < 10-

16). 
 
Divergence adjustment 
Divergence between humans and other primates is known to correlate with the relative number 
of SNPs in large regions3. We postulated that local divergence rates could be added to the model 
as a regional term that captured the local deviation from the base mutation rate. We used human-
macaque divergence information to determine the divergence score – defined as the number of 
divergent sites over screened sites for the region containing the gene as well as 1 MB upstream 
and downstream – for each gene. We used linear models to determine the best equation to adjust 
the per-gene probabilities of mutation to incorporate the divergence score. In the end, the 
probability of mutation is adjusted slightly for the divergence score. For genes with no 
divergence information, the average divergence score is used. This, however, lead to a global 
increase in the predicted rate of mutation, so all probabilities of mutation were modified so that 
the sum of all probabilities after divergence adjustment was equal to the sum of probabilities 
from before the adjustment. This adjustment of predictions significantly increased the correlation 
with the synonymous singletons in the ESP data (0.910, p < 10-16). 
 
Replication timing adjustment 
Replication timing has also been associated with overall mutation rate, with later replicating 
DNA having a higher rate of mutation4. We used replication timing Z scores from Koren et al to 
create a replication timing score for each gene5. The replication timing score is defined as the 
average replication timing score across the length of the gene. The replication timing score was 
used in linear models. It did significantly add to the mutational model (p=0.005), but had a very 
slight overall effect. Further investigation revealed that the model was predicting more 
synonymous changes as the average replication Z score increased, and thereby was already 
accounting for the adjustments that the replication score was adding. We did not include the 
replication timing adjustment in any further analyses. 



 6 

 
Using rare variants instead of singletons 
To increase power for our definition of constrained genes, we extracted the number of rare 
(<0.01%) synonymous variants found in each gene in the ESP data set. For this set of large 
counts per gene, the correlation between the number of rare synonymous variants and the gene 
length was 0.880. The probability of synonymous mutation as defined by our full model and the 
number of rare synonymous variants was 0.940. Due to the stochastic nature of small counts in 
the ESP data set, the maximum correlation we could achieve is 0.975, indicating that our model 
captured ~66% of the remaining correlation that we could achieve above gene length. 
 
 
Definition of constrained genes 
 
A traditional approach to identifying genes that appear to be under constraint is to compare the 
ratio of nonsynonymous to synonymous substitutions (known as the Ka/Ks or dN/ds). Given that 
the correlation between the probability of a synonymous mutation and the number of rare 
synonymous variants in a gene was high, we wanted to use our model to predict the number of 
rare missense variants as a way to evaluate genes under constraint in an approach similar to the 
Ka/Ks. We determined the expected number of variants by fitting a linear model based on the 
probability of mutation and the observed number of synonymous variants. The autosomes were 
fit separately from the X chromosome. The equations were applied using the probability of a 
missense mutation to create an expected number of rare missense variants in the ESP dataset. For 
both synonymous and missense variants, we created a signed Z score of the chi-squared 
deviation of observation from expectation. Negative values indicate more variants than expected, 
while positive values are tied to fewer variants observed than expected. 
 
In order to define the set of genes that appeared to be under excessive constraint, we used three 
filters: (1) the predicted number of rare synonymous variants should be 5 or greater, (2) the 
observed number of rare synonymous variants should not be significantly lower than expectation 
(p > 0.001), and (3) the observed number of missense singletons should be significantly lower 
than expectation (p < 0.001). The reason for restricting to genes with 5 or more expected 
synonymous singletons is so that true deviations from expectation can be separated from 
deviations caused by sampling problems. Using these filters, we identified 1,003 genes that 
appeared to be under excessive constraint. They represent roughly 5% of the genes in the 
genome and are listed in Supplementary Table 2. 
 
The genes in the constrained gene list show an enrichment for entries in the OMIM database, 
especially for entries associated with mental retardation and retinitis pigmentosa. 31% of the top 
86 constrained genes – for which the observed number of missense rare variants is significant at 
p < 10-6 – have entries in the Online Mendelian Inheritance in Man (OMIM) database with 
dominant or de novo inheritance patterns. None of them have recessive inheritance entries in 
OMIM. A comparison set was made of 111 genes for which the missense observations fell very 
closely around prediction (-0.01 < Z < 0.01). This set of genes had 2 OMIM entries (1.8%) with 
dominant or de novo inheritance and 11 (10%) with recessive inheritance. 
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Evaluating the de novo findings 
 
In this study, we focus primarily on the de novo mutations found in five publications of autism 
spectrum disorders (ASD)6-9 and two recent publications for intellectual disability10,11. We are 
also including 129 unpublished trios for ASD. We use the unaffected siblings sequenced as part 
of Iossifov et al as a control set6. 
 
Global excesses of mutations 
To compare the observed rate of de novo mutations by mutation type to the expected rate, we 
summed the total probability of the given type of mutation and adjusted for the number of 
individuals in the study. Poisson distribution probabilities were invoked to determine the 
significance of the observation. 
 
As presented in Table 1a in the main text, the rate of synonymous, missense, and loss-of-
function (LoF) mutations in unaffected siblings match expectation fairly well. For the ASD 
cases, the only category that shows statistical significance is LoF. Roughly 0.09 de novo LoF 
mutations are expected per exome, and we observed ~0.13 across the 1,078 cases. This is a 
highly significant difference (p=2.05x10-7). This recapitulates the excess in LoF mutations that 
each of the four recent studies reported, but with greater significance6-9. For intellectual 
disability, there is also significance for only the LoF category when compared to expectation 
(Table 3a, p=6.49x10-7). 
 
Number of genes with multiple mutations 
Even though there was a global excess in LoF mutations in the ASD cases, the signal was spread 
over many genes, making it hard to determine which specific genes may be contributing to the 
etiology of ASD. One way to prioritize genes would be to focus on those genes that contain 
multiple de novo mutations. We wanted to evaluate whether there was an excess of genes that 
contained multiple de novo mutations. To do so, we simulated de novo events by extracting each 
gene’s probability of mutation and then randomly drawing the expected number of de novo 
mutations based on weight (the probability). Using these simulations, we could determine an 
empirical p-value for the observed number of genes with multiple de novo mutations. Results are 
presented in Supplementary Table 3 for the unaffected siblings, ASD cases, and intellectual 
disability cases. The “LoF+missense” category uses the combined probability of a LoF and 
missense mutation to evaluate genes that show two or more de novo mutations that are LoF, 
missense, or both. The lowest possible p-value is 0.001 since 1,000 simulations were run. 
 
Both the ASD cases and the cases of intellectual disability show significantly more genes hit by 
multiple missense, LoF, and LoF+missense de novo mutations. The unaffected siblings show no 
such signal. 
 
Single genes with multiple mutations 
Since we have generated a per-gene probability of de novo mutations, we can directly evaluate 
genes that contain multiple de novo mutations for significance. To do so, each gene’s probability 
of mutation is extracted and the predicted number of de novo mutations by mutation type is 
determined by adjusting for the number of individuals in the study. The observed and expected 
numbers of de novo mutations are compared and the Poisson is invoked to determine 
significance. We perform two comparisons: the LoF mutations alone and the LoF and missense 
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mutations together. The first comparison is only made for those genes that contain multiple LoF 
de novo mutations; the second is performed for genes that have a combination of missense and 
LoF de novo mutations. Here, we have set the significance threshold at 10-6 since it 
conservatively accounts for both the number of genes under study and the number of tests using 
the Bonferroni correction. 
 
Table 2 in the main text lists the top genes for the ASD cases; Table 4 in the main text lists all 
genes that have multiple de novo mutations in the cases of intellectual disability. Supplementary 
Table 4 contains p-values for genes that had multiple de novo mutations in ASD cases. 
Supplementary Table 5 lists all genes with multiple de novo mutations in the unaffected 
siblings.  
 
Global mutation rates separated by IQ group 
Due to the significant role of de novo mutation in intellectual disability, we wanted to investigate 
the overall rates of mutations for those ASD cases without intellectual impairments. Several 
intelligence tests were used to assess proband IQ across testing sites. The IQ analyses presented 
here include individuals whose IQ was measured using one of four standardized, commonly used 
tests to evaluate intelligence in children: the WISC-IV12, the WASI13, the WPPSI-III (preschool 
and primary school age)14, and the DAS (early years and school age)15. These tests provide 
comparable assessments of full scale intelligence (g), using both verbal and nonverbal 
assessments16. Children who did not complete one of these four tests (n=95, 10.0%) were treated 
as missing without attempt. Probands who are missing IQ without attempt include those who 
were given an IQ test that does not assess intelligence comparably (n=78, 8.2%), specifically the 
Mullen Scales of Early Learning or the Leiter International performance scale, which are 
strongly weighted towards nonverbal assessment17,18. 
 
We had access to phenotypic information for 954 of the sequenced probands. Of these, 859 had 
taken an IQ test that could be compared to other tests. We removed those individuals that had a 
30-point or greater difference between their verbal and nonverbal IQs to avoid inclusion of 
excess measurement error or learning disabilities. Verbal and nonverbal IQ were correlated 
strongly with each other (r=0.70, p < 0.0001) as well as with the full scale IQ score (verbal IQ: 
r=0.89, p < 0.0001; nonverbal IQ: r=0.93, p < 0.0001). We separated the remaining 801 probands 
into those with and without measured IQs above statistical average. It is common for individuals 
affected with ASDs to be unable to complete or be scored on an IQ test; this was the case for 
14.3% (n=115) of probands for whom a test was attempted in the Simons sample. In the Simons 
Simplex Collection, probands who attempted to complete an eligible IQ test, but did receive a 
score, had significantly lower scores on the Vineland Scales of Adaptive Behavior (IQ test 
scored mean = 76.0, IQ test not scored mean = 60.3; t = 15.9, p < 0.0001). A Vineland composite 
standard score of 60 reflects adaptive behavior (overall functioning and self care skills) scores 
nearly three standard deviations below the mean, or approximately in the lowest 1% of the 
general population, controlling for age. As the inability to complete an IQ test is associated with 
case severity, we were specifically interested in estimating the de novo rate among individuals 
with both IQ above the general population mean and the behavioral capability to complete an IQ 
test—both indicators of higher functioning ASDs. The observed and expected de novo mutations 
per exome are listed in Supplementary Table 6. The individuals with full scale IQ ≥ 100 
matched expectation for de novo mutations per exome. Those individuals without measured IQs 
over 100, on the other hand, showed a global excess in de novo LoF mutations. The results were 
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similar when verbal and nonverbal IQ were analyzed separately (Supplementary Table 6c). 
There was no excess of de novo LOF mutation in individuals with verbal (p=0.19) or nonverbal 
(p=0.48) IQ greater than 100. 
 
 
Overlap between gene sets of interest and de novo containing genes 
 
A number of gene sets have been proposed as relevant to autism or descriptive of an ASD 
biochemical pathway. Given the global excess of de novo LoF mutations, we wanted to evaluate 
whether or not the list of genes that contain such mutations overlap more than expected with 
several of the proposed gene sets. 
 
In order to determine the significance of any observed overlap between a gene set of interest and 
the list of genes that contain de novo mutations, we first determine the total probability of 
mutation for all genes on the gene set of interest. The set total is compared to the total probability 
of mutation for all genes. This percentage becomes the expected overlap of de novo mutations 
with the gene set. Using the expected overlap and the number of mutations on the de novo list, 
we evaluate the observed overlap between the de novo list and the gene set of interest by 
invoking the binomial. All p-values are one-tailed. The de novo mutation list is broken down by 
mutation type (LoF, missense, and synonymous), as are the probabilities of mutation for the gene 
set of interest. 
 
We evaluated the overlap between three de novo lists and four separate gene sets of interest 
(Supplementary Figure 2). The unaffected list comes from 647 unaffected siblings and control 
individuals that were sequenced across many studies6,8,9,11,19. The ASD cases and intellectual 
disability (ID) cases are the 1,078 and 151, respectively, discussed throughout this study6-11,20. 
Significance was conservatively set at 0.01. In the figure, the asterisk (*) indicates a p-value of 
less than 0.01, while the double asterisk (**) indicates a p-value of less than 10-4. The gene sets 
of interest are a set of genes reported as disrupted in individuals with ASD or autistic features 
(Betancur)21, the set of targets of FMRP identified by Darnell and colleagues (FMRP)22, the set 
of significantly constrained genes that we defined earlier (Constrained), and the set of FMRP 
targets that are also constrained (Constrained FMRP). 
 
The de novo mutations found in the unaffected individuals showed no significant overlaps with 
any of the input sets for any mutation type. For the de novo mutations found in the ASD cases, 
the overlaps for synonymous and missense mutations show no significant enrichments on any of 
the input sets. The de novo LoF mutations found in ASD cases, however, show significant 
overlap with the FMRP interactors, the constrained genes, and the set of constrained FMRP 
interactors (p < 0.0001 for all, 2.3 to 3.9-fold enrichment). The de novo LoF mutations in cases 
of intellectual disability have significant overlaps with all tested input sets (p < 0.0001 for all, 3.5 
to 18.7-fold enrichment). The missense de novo mutations for intellectual disability are also 
significantly enriched on the set of FMRP interactors, the constrained genes, and the set of 
constrained FMRP interactors (p < 0.0001 for all, 2.6 to 5.5-fold enrichment). The de novo 
synonymous mutations in the intellectual disability cases have no significant enrichment with 
any of the gene sets of interest. 
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Phenotype of individuals with de novo LoF mutations in FMRP targets 
 
Across the 1,078 individuals with ASD, there were 35 de novo LoF mutations in targets of 
FMRP spread across 34 individuals (referred to as FMRP-I here)22. For those individuals for 
which we had access to phenotypic information, we extracted IQ and sex. We found that the 
FMRP-I group had significantly fewer individuals with IQ ≥ 100 than the rest of the sample set 
(Supplementary Table 7a, Fisher’s exact p=4.01x10-4). As before, individuals who started an 
IQ test but were not given an IQ score due to being severely impaired are included in the IQ < 
100 group. To ensure that the association was not driven by those probands with attempted but 
missing IQ values, we also tested the association using only those individuals with estimated full 
scale IQ scores (Supplementary Table 7b, Fisher’s exact p=0.0021). The FMRP-I group also 
had a reduced male bias. Where the whole set of individuals is ~80% male, the FMRP-I group is 
only ~59%, which is a significant difference (Supplementary Table 8, Chi-square p=0.02). 
 
 
Comparison of constraint metrics 
 
Comparing the power of our method to that of NS:S ratio 
The ratio of nonsynonymous (NS) substitutions per NS site to synonymous (S) substitutions per 
S site in a gene has been often used to determine if that gene has evidence of selection acting on 
it. A high NS:S ratio would indicate positive selection, while a low NS:S ratio would be evidence 
for purifying selection. Theoretically, our method of comparing observed NS variants to 
expectation should achieve greater statistical power than the NS:S comparison. To support this 
claim, we used the number of NS and S rare variants (minor allele frequency < 0.01%) found in 
the NHLBI’s Exome Sequencing Project (ESP) dataset and determined each gene’s deviation in 
terms of their ratio of S to NS sites compared to the genome-wide average. 
 
We removed the 134 genes where the observed synonymous and nonsynonymous rates were 
both significantly elevated or significantly depressed from expectation as determined by our 
model (both p < 0.001). These poorly sequenced or mapped genes – as mentioned in the main 
text – were also removed from our analysis to define constrained genes. We then identified the 
remaining genes that were as deviant from the genome-wide average as the constrained genes we 
defined with our model were from expectation (p < 0.001). Compared to the 1,003 genes defined 
as constrained by our model, this approach only identified 377 genes that showed evidence of 
purifying selection, 237 (~63%) of which were also identified as constrained by our method. 
Included in the 766 genes considered constrained only by our metric were a number of genes – 
the top ten of which include RYR2, MLL, MLL2, and SYNGAP1 – that have already been 
established as causes of autosomal or X-linked dominant forms of Mendelian disease (OMIM 
enrichment p=5 x 10-4). 
 
Since our metric was able to identify more genes that showed evidence of selective constraint, 
and especially since some of those are known to be causes of Mendelian disease, we conclude 
that our method of identifying constrained genes adds substantial power to the traditional 
approach and is an appropriate metric. 
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Comparison of constrained genes to the RVIS metric 
Recently, Petrovski et al published a similar method to search for genes that appeared to be 
intolerant of mutations23. Their method evaluates the shift in the allele frequency spectrum of 
variants identified in genes in the ESP dataset to identify genes that have more rare variation. 
Specifically, the number of common nonsynonymous variants found in each gene was regressed 
against the total number of variants to determine the intolerance score. Genes with an unusually 
high ratio of rare to common variation are more likely to be intolerant of mutations and are 
assigned a lower residual variation intolerance score (RVIS). This approach is orthogonal to our 
metric of constraint since we search for a deficiency of rare nonsynonymous variation. 
 
We took the intersection between the two datasets to compare our metric with the scores 
provided in Petrovski et al23. This process eliminated some of the genes considered constrained 
by our metric, leaving 827 genes. Their score yielded a similar number of constrained genes 
(n=842), which were defined as those genes with a residual variation intolerance score in the top 
5%. 231 genes were considered constrained by both metrics, which is far greater than expected 
(0.25%, ~41 genes). Using a Wilcoxon rank-sum test, we found that the genes defined as 
constrained by our metric had significantly lower (more intolerant) RVIS values (p < 10-16). 
Similarly, the top 5% RVIS genes had significantly higher constraint scores (Wilcoxon rank-
sum, p < 10-16). We found a correlation of -0.35 between the two scores of constraint, which is 
illustrated in Supplementary Figure 3. 
 
 
Confirming the association between constraint and de novo mutations 
The power to determine if a gene is significantly constrained relies on gene size. As mentioned 
above, genes where we predicted fewer than 5 rare synonymous variants had to be removed. In 
order to confirm that the association we found between constraint and the de novo LoF mutations 
identified in ASD patients, we first investigated the relationship between constraint and the de 
novo mutations found in unaffected individuals. As depicted in Supplementary Figure 2a, we 
found no enrichment of de novo LoF mutations from unaffected individuals in constrained genes. 
Additionally, we included gene length as a covariate while performing regressions of ASD de 
novo LoF genes on constraint and found that the association remained. We also took the largest 
10% of genes and performed the regression again; constraint was still significant, but the gene 
length – when included as a covariate – showed no association. 
 
Our method of determining constraint generates the number of rare missense variants that are 
expected to be in each gene. As an alternative metric to constraint, we also evaluated the fraction 
of missense variation that was not seen, a metric that is completely independent of gene size. We 
found that, in a linear regression, the fraction of missing missense variation was significantly 
able to predict whether a gene was haploinsufficient (p=2.13x10-12). 
 
For our final analyses to confirm that our enrichment analysis was not biased towards bigger 
genes, we created a list of the largest 5% of genes and queried the de novo loss-of-function 
mutations identified in unaffected individuals. We expect that there should be no significant 
relationship between de novo LoF mutations in unaffected individuals and these large genes. 
When we use a simple logistic regression to explain the de novo LoF genes in unaffected 
individuals, we find an odds ratio (OR) of about 5.5, which describes a highly significant 



 12 

enrichment of big genes. Our method of determining enrichment, however, accounts for the 
expected mutation rate of each gene – thereby inherently incorporating gene size – and shows 
this set of mutations is not actually “enriched” at all (p=0.425; fold enrichment/OR = 1.1). These 
de novo LoF mutations in unaffected individuals are occurring in exactly the chance proportion 
they should be in larger genes. We therefore conclude that the enrichment analysis central to our 
interpretation of ASD events is not affected by gene lists being non-random with respect to size. 
 
Comparison of three different metrics of constraint 
Our metric is one way of searching for genes that appear to be relatively intolerant of mutations 
in the human population. One approach is the residual variation intolerance score (RVIS) created 
by Petrovski and colleagues23, which evaluates the relative excess of rare variants to common 
ones in genes. Since Petrovski et al did not define a list of intolerant genes in their paper, we 
defined such a list by taking the top 5.5% most intolerant genes according to their metric. 5.5% 
was selected since that is the percentage of genes that we define as constrained using our metric. 
An additional alternative comes from Bustamante et al, who used both fixed and polymorphic 
synonymous and nonsynonymous sites to find genes that appear to be affected by selection, 
including 813 loci that appeared to be under negative selection24. 
 
We sought to compare both our constraint score and list of constrained genes with the results of 
these other approaches. To do this, we focused on the ability to predict known haploinsufficient 
genes (as defined in OMIM) and the enrichment of these genes with de novo LoF mutations 
identified in ASD patients. Our results are summarized in Supplementary Table 9. For the 
quantitative metrics (our constraint score and the RVIS metric), we performed a linear regression 
between haploinsufficient genes and the score with gene size as a covariate. While both metrics 
have significant predictive ability, our constraint score outperforms RVIS slightly (t-value = 
10.011 for constraint, -9.561 for RVIS). For the list-based comparison, we used a logistic 
regression with gene length as a covariate. In this comparison, the top 5.5% intolerant genes 
according to RVIS had an odds ratio (OR) of ~5.5, while the constrained gene set that we 
defined had an OR of 4.9, both of which were significant. The genes identified by Bustamante 
and colleagues showed no significance (Supplementary Table 9a). 
 
We also evaluated the fraction of these different sets of constrained genes that contained a de 
novo LoF in ASD cases. Our method, as explained above, determines the fraction of constrained 
genes that are expected to contain a de novo mutation by chance. We then evaluate the observed 
fraction and can determine both the fold enrichment and significance. When we evaluated the 
three previously mentioned lists of genes – our constrained, top 5.5% intolerant genes using 
RVIS23, and the loci identified by Bustamante24 – we found that our list of constrained genes had 
the greatest fold enrichment of genes that contained a de novo LoF in ASD cases (p=3.58x10-6; 
Supplementary Table 9b). The top 5.5% of genes identified using RVIS also performed well 
(fold enrichment of 1.9, p=5.36x10-5), but the loci from Bustamante et al showed no significant 
enrichment. 
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Autism spectrum disorder samples 
 
As mentioned in the main text, almost all of the ASD samples used in this study were previously 
published: Neale et al (n=175 trios)7, Iossifov et al (n=343)6, O’Roak et al 2011 (n=17)20, 
O’Roak et al 2012 (n=189)8, and Sanders et al (n=225)9. Updated de novo calls were used for 
400 of these trios7,9. In addition, we included 129 unpublished trios. Autism Consortium samples 
(n=78 trios) were collected in Boston under IRB approval from Harvard Medical School, 
Massachusetts General Hospital, Children’s Hospital Boston, Tufts-NEMC, Boston University 
Medical Center with ADI and ADOS assessment. Finnish autism samples (n=51 trios) were 
collected under IRB approval at University of Helsinki with ADI and ADOS assessment and 
consented for autism research only. In both studies, all participants gave written informed 
consent, though as autism is classified as a childhood disorder, many subjects are children with 
informed consent provided by parents or guardians. 
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Supplementary Tables 
 
Supplementary Table 1: Gene specific probabilities of mutation. The per-gene probabilities of 
mutation are listed for each gene (transcript specified) by mutation type. Probabilities of 
mutation are given per chromosome and have been transformed by log10. “NA” is listed when 
there is no probability of mutation due usually to low coverage. 
 

Please see supplementary Excel document. 
 
 
 

Supplementary Table 2. Top 1,003 constrained genes. The gene specific information listed 
includes transcript and identifier, chromosome, transcription start position, number of coding 
bases, probabilities of a synonymous and missense mutation (given per chromosome), the 
number of observed and expected synonymous and missense variants, the signed Z scores for the 
deviation for both synonymous and missense variants, and the ratio of missing missense 
variation (“ratio_missing”). 
 

Please see supplementary Excel document. 
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a) Unaffected siblings 

Mutation Type 
Observed 
genes with 
2+ DNMs 

Average 
expected 

genes with 2+ 
DNMs 

Maximum 
expected genes 
with 2+ DNMs 

p-value 

Synonymous 0 0.5 2 1.0 
Missense 5 2.5 5 0.1049 

LoF 0 0.04 0 1.0 
LoF+missense 6 3 6 0.0779 

  

b) ASD cases 

Mutation Type 
Observed 
genes with 
2+ DNMs 

Average 
expected 

genes with 2+ 
DNMs 

Maximum 
expected genes 
with 2+ DNMs 

p-value 

Synonymous 4 3.8 7 0.5186 
Missense 33 21.4 29 0.0070 

LoF 6 0.5 2 < 0.001 
LoF+missense 48 27.2 36 < 0.001 

 

c) Intellectual disability cases 

Mutation Type 
Observed 
genes with 
2+ DNMs 

Average 
expected 

genes with 2+ 
DNMs 

Maximum 
expected genes 
with 2+ DNMs 

p-value 

Synonymous 1 0.09 1 0.0879 
Missense 3 0.5 2 0.0090 

LoF 2 0.01 0 < 0.001 
LoF+missense 6 0.6 2 < 0.001 

 

Supplementary Table 3. Evaluating genes with multiple de novo mutations. The observed 
number of genes with two or more de novo mutations (DNMs) in unaffected siblings (a), autism 
spectrum disorder (ASD) cases (b), and intellectual disability cases (c). The average and 
maximum expected number of such genes were determined by simulation. 
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Supplementary Table 4. Significance of genes with multiple de novo mutations (DNMs) in 
ASD cases 
Gene Mutations # LoF # Missense # DNMs 

Expected p-value Test 

DYRK1A nonsense, frameshift, 
splice 3 0 0.0072 6.15E-08 LoF 

SCN2A 
frameshift, missense, 
missense, nonsense, 

nonsense 
3 2 0.0177 9.20E-07 LoF 

CHD8 missense, frameshift, 
nonsense, splice 3 1 0.0221 1.76E-06 LoF 

KATNAL2 splice, splice 2 0 0.0049 1.19E-05 LoF 
POGZ frameshift, frameshift 2 0 0.0134 8.93E-05 LoF 

ARID1B frameshift, frameshift 2 0 0.0178 1.57E-04 LoF 

SCN2A 
frameshift, missense, 
missense, nonsense, 

nonsense 
3 2 0.1334 3.15E-07 LoF+mis 

CHD8 missense, frameshift, 
nonsense, splice 3 1 0.1724 3.20E-05 LoF+mis 

SUV420H1 splice, missense, 
missense 1 2 0.0602 3.48E-05 LoF+mis 

PLEKHA8 missense, missense 0 2 0.0302 4.46E-04 LoF+mis 
TUBA1A missense, missense 0 2 0.0338 5.59E-04 LoF+mis 

SLCO1C1 missense, missense 0 2 0.0394 7.55E-04 LoF+mis 
NTNG1 missense, missense 0 2 0.0413 8.29E-04 LoF+mis 

TSNARE1 missense, missense 0 2 0.0498 1.20E-03 LoF+mis 
TBR1 missense, frameshift 1 1 0.0541 1.41E-03 LoF+mis 

MEGF11 missense, missense 0 2 0.0552 1.47E-03 LoF+mis 
KRBA1 missense, missense 0 2 0.0642 1.98E-03 LoF+mis 
SRBD1 missense, missense 0 2 0.0645 1.99E-03 LoF+mis 

KIRREL3 missense, missense 0 2 0.0652 2.03E-03 LoF+mis 
NR3C2 nonsense, missense 1 1 0.0655 2.05E-03 LoF+mis 
UBE3C missense, missense 0 2 0.0775 2.85E-03 LoF+mis 
AGAP2 missense, missense 0 2 0.0825 3.22E-03 LoF+mis 

ABCA13 missense, missense, 
missense 0 3 0.2890 3.24E-03 LoF+mis 

ADCY5 missense, missense 0 2 0.1098 5.61E-03 LoF+mis 
KIAA0182 missense, missense 0 2 0.1114 5.76E-03 LoF+mis 
ZNF423 missense, missense 0 2 0.1131 5.94E-03 LoF+mis 
ZNF638 frameshift, missense 1 1 0.1212 6.78E-03 LoF+mis 
SCN1A missense, missense 0 2 0.1352 8.36E-03 LoF+mis 
LAMB2 missense, missense 0 2 0.1604 1.16E-02 LoF+mis 
MYO7B missense, missense 0 2 0.1616 1.17E-02 LoF+mis 

KIAA0100 nonsense, missense 1 1 0.1619 1.18E-02 LoF+mis 
PLXNB1 frameshift, missense 1 1 0.1718 1.32E-02 LoF+mis 

CACNA1D missense, missense 0 2 0.1732 1.34E-02 LoF+mis 
ZFYVE26 frameshift, missense 1 1 0.1753 1.37E-02 LoF+mis 

SBF1 missense, missense 0 2 0.1808 1.45E-02 LoF+mis 
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Supplementary Table 4 Continued. Significance of genes with multiple de novo mutations 
(DNMs) in ASD cases 
Gene Mutations # LoF # Missense # DNMs 

Expected p-value Test 

BRCA2 missense, missense 0 2 0.1928 1.64E-02 LoF+mis 
TRIO missense, missense 0 2 0.2374 2.41E-02 LoF+mis 

ALMS1 missense, missense 0 2 0.2422 2.50E-02 LoF+mis 
RELN nonsense, missense 1 1 0.2429 2.51E-02 LoF+mis 
ANK2 missense, nonsense 1 1 0.2591 2.83E-02 LoF+mis 
MLL3 nonsense, missense 1 1 0.3159 4.05E-02 LoF+mis 

DNAH5 frameshift, missense 1 1 0.3219 4.19E-02 LoF+mis 
FAT1 missense, missense 0 2 0.3343 4.49E-02 LoF+mis 

GPR98 missense, missense 0 2 0.3761 5.53E-02 LoF+mis 
AHNAK2 missense, missense 0 2 0.4172 6.62E-02 LoF+mis 
SYNE1 missense, missense 0 2 0.5931 1.20E-01 LoF+mis 

TTN missense, missense, 
missense, missense 0 4 2.1947 1.80E-01 LoF+mis 

MUC5AC missense, missense 0 2 . . LoF+mis 
RFX8 missense, missense 0 2 . . LoF+mis 

EFCAB8 missense, missense 0 2 . . LoF+mis 
 
Supplementary Table 4. Significance of genes with multiple de novo mutations (DNMs) in 
autism spectrum disorder (ASD) cases. LoF mutations include nonsense, frameshift, and splice 
site-disrupting mutations. “# LoF Expected” refers to the expected number of de novo LoF 
mutations based on the probability of mutation for the gene as determined by our model. The 
genome-wide significance threshold is 1x10-6. “.” = no data available. 
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Gene Mutations # LoF # Missense # DNMs 
Expected 

p-value Test 

CSNK1G3 missense, 
frameshift 1 1 0.0098 4.78E-05 LoF+mis 

UGT2B4 missense, 
missense 0 2 0.0102 5.12E-05 LoF+mis 

USP34 missense, 
missense 0 2 0.0717 2.45E-03 LoF+mis 

AHNAK2 missense, 
missense 0 2 0.1327 8.07E-03 LoF+mis 

SYNE2 missense, 
missense 0 2 0.1369 8.56E-03 LoF+mis 

TTN missense, 
missense 0 2 0.6983 1.55E-01 LoF+mis 

 

Supplementary Table 5. Significance of specific genes with multiple de novo mutations 
(DNMs) in unaffected siblings. LoF mutations include nonsense, frameshift, and splice site-
disrupting mutations. “# LoF Expected” refers to the expected number of de novo LoF mutations 
based on the probability of mutation for the gene as determined by our model. The genome-wide 
significance threshold is 1x10-6.
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a) 

 Full Scale IQ scored above 100  
Mutation Type Observed events per 

exome 
Expected events per 

exome 
p-value  

Synonymous 0.24 0.27 0.2346 2-tailed 
Missense 0.66 0.62 0.4736 2-tailed 

Loss-of-Function 0.08 0.09 0.5867 1-tailed 
n = 229      

 
b) 

 Full Scale IQ not scored above 100  
Mutation Type Observed events per 

exome 
Expected events per 

exome 
p-value  

Synonymous 0.22 0.27 0.0123 2-tailed 
Missense 0.62 0.62 0.9946 2-tailed 

Loss-of-Function 0.17 0.09 1.17E-10 1-tailed 
n = 572      

 

c) 

Phenotypic Group Number of 
samples 

Observed de novo LoF events per 
exome p-value 

Verbal IQ ≥ 100 242 0.10 0.1903 
Verbal IQ not scored above 

100 712 0.15 2.43E-08 

    
Nonverbal IQ ≥ 100 276 0.09 0.4829 

Nonverbal IQ not scored 
above 100 678 0.16 1.09E-09 

 

Supplementary Table 6. Investigating the rate of de novo mutation as a function of IQ. (a) The 
observed and expected rate of de novo mutations by mutation class for the autism spectrum 
disorder cases with full scale IQ ≥ 100. (b) The observed and expected rate of de novo mutations 
by mutation class for the autism spectrum disorder cases that did not have a full scale IQ above 
100. (c) The observed rate of de novo loss-of-function (LoF) mutations split by verbal IQ and 
nonverbal IQ. 
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a) IQ Attempted but unscored individuals included 

 FMRP-I Rest of Cases 
IQ ≥ 100 1 (3%) 254 (31%) 

IQ not above100  29 (97%) 575 (69%) 
Fisher’s exact p-value = 4.01x10-4 

 

b) Only scored individuals 

 FMRP-I Rest of Cases 
IQ ≥ 100 1 (5%) 254 (35%) 

IQ not above100  20 (95%) 469 (65%) 
Fisher’s exact p-value = 0.0021 

Supplementary Table 7. The number (and percentage) of individuals that have an IQ ≥ 100 or 
an IQ not scored above 100 split by containing a de novo loss-of-function mutation in a target of 
FMRP (FMRP-I) or not (“Rest of Cases”). In (a), individuals who started an IQ test but were not 
given an IQ score are included. Only individuals with IQ scores are included in (b). 
 
 

 

 FMRP-I Rest of Cases 
Male 19 (63%) 658 (80%) 

Female 11 (37%) 163 (20%) 
Chi-square p-value = 0.02 

Supplementary Table 8. The number (and percentage) of individuals that are male and female 
split by containing a de novo loss-of-function mutation in a target of FMRP (FMRP-I) or not 
(“Rest of Cases”). 
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a) Linear and logistic regressions 

  Quantitative Scores  List-Based 

  Constraint 
score RVIS  Top 

Constrained 
Top 

RVIS Bustamante 

OMIM 
Haplo-

insufficiency 

t-value 10.011 -9.561 OR 4.909 5.490 1.307 

p-value < 10-16 < 10-16 p-value < 10-16 < 10-16 0.191 

 

b) Enrichment of genes with those containing a de novo LoF in ASD patients 

  Top Constrained Top RVIS Bustamante 
ASD de novo 

LoF 
Fold enrichment 2.282 1.904 0.836 

p-value 3.58x10-6 5.36x10-5 0.718 
 

Supplementary Table 9. Comparison of the predictive ability of different sets of constrained 
genes for known haploinsufficient genes and those disrupted by a de novo LoF mutation in ASD 
patients. In (a), the ability of both constraint scores and lists of constrained genes were tested for 
their ability to predict known haploinsufficient genes, as listed in OMIM. The quantitative scores 
(constraint and RVIS23) were used in a linear regression with gene size added as a covariate. The 
gene lists (constrained, top 5.5% most intolerant genes using RVIS23, and the genes identified in 
Bustamante et al24) were evaluated with a logistic regression with gene size as a covariate. In (b), 
the three gene lists were evaluated for their enrichment of de novo LoF mutations identified in 
ASD patients. To do this, the expected fraction of constrained genes to contain one of these de 
novo mutations was determined and then used to establish the fold enrichment and significance 
of the observed fraction. 
 
 


